发布时间:2020-11-25点击次数:802
特值检验法:
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
极端性原则:
极将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
剔除法:
剔除利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
数形结合法:
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
递推归纳法:
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
顺推破解法:
顺利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
逆推验证法(代答案入题干验证法):
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
正难则反法:
正从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
特征分析法:
特对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
估值选择法:
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。